Chapter Introduction (pdf version)
NAG Library Manual

E01 – Interpolation

E01 Chapter Introduction
Routine
Name
Mark of
Introduction

Purpose
E01AAF
Example Text
Example Data
1 Interpolated values, Aitken's technique, unequally spaced data, one variable
E01ABF
Example Text
Example Data
1 Interpolated values, Everett's formula, equally spaced data, one variable
E01AEF
Example Text
Example Data
8 Interpolating functions, polynomial interpolant, data may include derivative values, one variable
E01BAF
Example Text
8 Interpolating functions, cubic spline interpolant, one variable
E01BEF
Example Text
Example Data
13 Interpolating functions, monotonicity-preserving, piecewise cubic Hermite, one variable
E01BFF
Example Text
Example Data
13 Interpolated values, interpolant computed by E01BEF, function only, one variable
E01BGF
Example Text
Example Data
13 Interpolated values, interpolant computed by E01BEF, function and first derivative, one variable
E01BHF
Example Text
Example Data
13 Interpolated values, interpolant computed by E01BEF, definite integral, one variable
E01DAF
Example Text
Example Data
14 Interpolating functions, fitting bicubic spline, data on rectangular grid
E01RAF
Example Text
Example Data
9 Interpolating functions, rational interpolant, one variable
E01RBF
Example Text
Example Data
9 Interpolated values, evaluate rational interpolant computed by E01RAF, one variable
E01SAF
Example Text
Example Data
13 Interpolating functions, method of Renka and Cline, two variables
E01SBF 13 Interpolated values, evaluate interpolant computed by E01SAF, two variables
E01SGF
Example Text
Example Data
18 Interpolating functions, modified Shepard's method, two variables
E01SHF 18 Interpolated values, evaluate interpolant computed by E01SGF, function and first derivatives, two variables
E01TGF
Example Text
Example Data
18 Interpolating functions, modified Shepard's method, three variables
E01THF 18 Interpolated values, evaluate interpolant computed by E01TGF, function and first derivatives, three variables

Chapter Introduction (pdf version)
NAG Library Manual

© The Numerical Algorithms Group Ltd, Oxford, UK. 2006